هجلة العبقري في الرياضيات (الأعداد والحساب) الملخص// الشعبة: الأولى جذع مشترك علومر ولكنولوجيا.

ملخص: حول الأعداء والحهاب/التحضي الجير للبكالوريا//الهوبة: 01ع.

1 المجموعات الأساسية للأعداد:

عموعة الأعداد الطبيعية:

0؛ 1؛ 2؛ ... تسمى أعداد طبيعية.

نرمز إلى مجموعة الأعداد الطبيعية بالرمز N.

 $\mathbb{N} = \{0; 1; 2; \dots\}$ ونكتب:

 $.-21 \notin \mathbb{N} \bullet : 21 \in \mathbb{N} \bullet$

<u>ملاحظات:</u>

- 0 هو أصغر عدد طبيعي $(\mathbb{N} \ni 0)$
 - المجموعة N غير منتهية.
 - * الله هي الله ما عدا 0،

 $\mathbb{N}^* = \mathbb{N} - \{0\} = \{1; 2; \dots\}$ ونكتب

عموعه الأعداد الصحيحه النسبيه:

... ؛ 2 ؛ 1 ؛ 0 ؛ 1 - ؛ 2 - ؛ ... تسمى أعداد صحيحة نسبية. نر مز إلى مجموعة الأعداد الصحيحة النسبية بالرمز \[\].

 $\mathbb{Z} = \{...; -2; -1; 0; 1; 2; ...\}$ ونكتب

 $.-\frac{21}{2} \notin \mathbb{Z} \bullet :-21 \in \mathbb{Z} \bullet \underline{\hspace{1cm}}$

<u>نتيجة:</u>

- حل عدد طبيعي هو عدد صحيح نسبي، نقول أن المجموعة \mathbb{Z} المجموعة \mathbb{Z} ونكتب: $\mathbb{Z} \supset \mathbb{N}$.
 - ③ موعد الأعداد العشربد:

العدد العشري هو العدد الذي يُمكن كتابته على الشكل: $p \in \mathbb{Z}$ $\frac{p}{10^n}$.

نرمز إلى مجموعة الأعداد العشرية بالرمز ١٠

$$. \begin{cases} p = 7 \in \mathbb{Z} \\ n = 0 \in \mathbb{N} \end{cases} : 7 = \frac{7}{10^0} \in \mathbb{D} \bullet$$

- $. \begin{cases} p = -46 \in \mathbb{Z} \\ n = 1 \in \mathbb{N} \end{cases} \stackrel{\cdot = \frac{-23}{5}}{= \frac{-46}{10^1}} \in \mathbb{D} \bullet$
- $rac{p}{10^n}$ كُنه: لا يُمكن كتابته على الشكل $rac{p}{7}
 otin \mathbb{Z}$ $\stackrel{\dots}{=} \mathbb{Z}$

<u>نتيجة:</u>

■ کل عدد صحیح نسبی هو عدد عشری، إذن:
 □ - \(\bar{\pi} \)

بالمعداد الناطفة:

العدد الذي يُمكن كتابته على الشكل: $p \in \mathbb{Z}$ $q \in \mathbb{Z}^*$

نرمز إلى مجموعة الأعداد الناطقة بالرمز \mathbb{Q} .

أحثلة:

- $\begin{cases}
 p = 3 \in \mathbb{Z} \\
 q = 2 \in \mathbb{Z}^* & \frac{3}{2} \in \mathbb{Q}
 \end{cases}$
- $\begin{cases} p = -1 \in \mathbb{Z} \\ q = 7 \in \mathbb{Z}^* \end{cases} \xrightarrow{\frac{-1}{7}} \in \mathbb{Q} \bullet$
- $lacktrightlacktrightegin{aligned} \bullet & 2 & 0 & 0 \\ \hline 0 & \pi & 0 & 0 \\ \hline 0 & \pi & 0$

نتيجة:

- \blacksquare کل عدد عشري هو عدد ناطق، إذن: $\mathbb{Q} \supset \mathbb{Q}$.
 - كل عدد حقيقي غير ناطق هو عدد أصم.
 - 🖰 مجموعة الأعداد العفيفة:

مجموعة الأعداد الحقيقية \mathbb{R} هي مجموعة فواصل نقط مستقيم مُزوّد بمعلم (0;I).

العدد الحقيقي 0 هو فاصلة المبدأ 0، نكتب: 0(0).

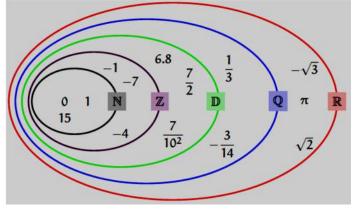
العدد الحقيقي 1 هو فاصلة النقطة I، نكتب: I(1).

<u> ملاحظات:</u>

- R هي مجوعة الأعداد الناطقة مع مجموعة الأعداد الصماء.
 - $\mathbb{R} =]-\infty; +\infty[$ يُمكن أن نكتب $-\infty$
 - ∞ و ∞ + ليسا بعددين $\frac{1}{100}$ رمزان يعبران عن اللانهاية.
- $\mathrm{id}_{\mathbb{Z}^*} : \mathbb{N}^* : \mathbb{Z}^* : \mathbb{N}^* : \mathbb{Z}^* : \mathbb{N}^* :$
 - $\mathbb{R}^{*-} =]-\infty; 0[\mathbb{R}^+ = [0; +\infty[$
 - 6 مفارنة مجموعات الأعداد:
 - $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$

مجلة العبقري في الرياضيات (الأعداد والحساب) الملخص _____ الشعبة: الأولى جذع مشترك علوم وتكنولوجيا .

تهنيل مجموعات الأعراد:



🗇 طربقه (طعرفه طبيعه عد):

لمعرفة طبيعة عدد،

🖔 ئېسطە،

الله ثمّ نبحث عن أصغر مجموعة ينتمي إليها هذا العدد.

<u>8 2010:</u>

خاصية 01:

■ يتميز كل عدد ناطق بكتابة عشرية تتضمن دوراً.

أمثلة:

• $-7 = -7, \underline{0} • \frac{3}{2} = 1,5\underline{0} • \frac{20}{11} = 1,\underline{81}$ • $\frac{20}{11}$ تسمى الكتابة العشرية الدورية للعدد $1,\underline{81}$

ودورها 81.

طريقة:

أيمكن الانتقال من الكتابة الكسرية إلى الكتابة العشرية لعدد ناطق، باستعمال الحاسبة.
 أي ويمكن الانتقال من الكتابة العشرية إلى الكتابا

الكسرية لعدد ناطق، كما يلي: الكتابة العشرية إلى الكتابة الكسرية لعدد ناطق، كما يلي:

إذا كان الرور مباشرة بعد الفاصلة.

لقاعدة:

$$\frac{||_{\text{leg}(2)}||_{\text{leg}(2)}}{1}+||_{\text{leg}(2)}||_{\text{leg}(2)}+||_{\text{leg}(2)}||_{\text{leg}(2)}+||_{\text{leg}(2)}||_{\text{leg}(2)}+|$$

.
$$2, \underline{14} = 2 + \frac{14}{10^2 - 1} = \frac{212}{99}$$

إذا كان الدور ليه صباشرة بعد الفاصلة.

مثان: ● البحث عن الصيغة الكسرية للعدد 34,1<u>456</u>.

 $10 \times 34,1456 = 341,456$ كدينا: $\frac{456}{203} = 341,456 = 341 + \frac{456}{10^3 - 1} = \frac{3411115}{999}$ و

.
$$34, 1\underline{456} = \frac{341115}{999} \times \frac{1}{10} = \frac{341115}{9990}$$

<u>خاصية 02:</u>

کل عدد ناطق یقبل کتابة وحیدة، علی شکل کسر

غير قابل للاختزال $\frac{p}{q}$ ، p و p أوليان فيما بينهما

PGCD(p;q) = 1.

 $\frac{102}{8}$ مكان: $\Phi = \frac{51}{4}$ مكل غير قابل للإختزال لـ $\frac{51}{8}$

@ معرفت إذا كان عدد ناطق عدد عشري:

(الخاصبة الممبزة لعدد عشري)

- المعرفة إذا كان عدد ناطق هو عدد عشري كان نكتبه على شكل كسر غير قابل للاختزال، كان كسابة مقامه على الشكل بعد الاختزال، فإذا أمكن كتابة مقامه على الشكل $2^n \times 5^m$ عشري؛ وإن لم يمكن فهو ليس عشري.
 - $\frac{3}{20} \in D \bullet \underline{\text{otherwise}}$

 $\frac{3}{100}$ كسر غير قابل للاختزال وَ $\frac{3}{100}$ كسر غير قابل للاختزال وَ

 $\stackrel{\cdot}{\underset{18}{}}\stackrel{21}{\notin} D$

 $2^n imes 5^m$ وَ 6 لا يُمكن كتابته على الشكل $\frac{21}{18} = \frac{7}{6}$.

تهارين:

.19-18 و 23 ؛20 ؛15 ؛16 ؛15 ؛16 ؛03 ؛03 ؛03 ؛01 .19-18

2 الأعداد القابلة للإنشاء:

حل النشاط 2ص2.

① الأعداد الفابلة للإنشاء:

نقول عن العدد χ أنّه قابل للإنشاء، إذا تمكنا باستعمال مدور ومسطرة غير مدرجة إنشاء نقطة M من مستقيم (d) مزود بمعلم (0;I) فاصلتها χ .

② إنشاء الأعداد الناطفة:

مبرهنة:

كل الأعداد الناطقة قابلة للإنشاء

طريقة إنشاء عدد ناطق:

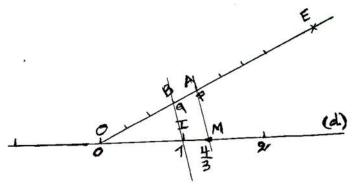
لإنشاء عدد ناطق $\frac{p}{q}$ نتبع الخطوات التالية:

- نرسم مستقیم (d) مزود بمعلم (0;I).
 - . (d) خين نقطة E خارج المستقيم E
- B فعلم على المستقيم (OE)، النقطتين A و B فاصلتيهما p و p على الترتيب.
- نرسم المستقيم (AM) الذي يُوازي (BI)، حيث $M \in (d)$ ب**تطبيق نظرية طالس** نجد:

OB = q و OA = p OI = 1: ولدينا والدينا والدينا والدينا والدينا والدينا والدينا والدينا والدينا

 $M\left(rac{P}{q}
ight)$ اِذن: $OM=rac{p}{q}$

 $\frac{4}{2}$ إنشاء العدد $\frac{4}{3}$:



حل النشاط 03 ص<u>02.</u>

3 إنشاء الأعداد الصماء:

ەبرھنة:

إذا كان x قابل للإنشاء فإنّ \sqrt{x} قابل للإنشاء.

طريقة إنشاء عدد أصم:

لإنشاء عدد أصم \sqrt{x} نتبع الخطوات التالية:

ن نُنشئ مثلث قائم ABC، طول وتره $\frac{x+1}{2}$ ،

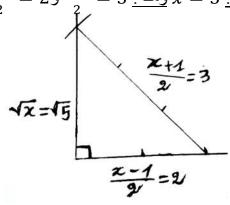
وطول أحد ضلعيه القائمين $\frac{x-1}{2}$.

بتطبيق نظرية فيتاغورث $\frac{1}{1}$ طول الضلع القائم الآخر يساوي \sqrt{x} .

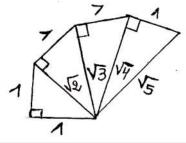
• باستعمال مدور ننقل الطول على مستقيم (d) مزود بمعلم (0;I).

مئان: ● إنشاء العدد 5/:

 $\frac{x-1}{2} = 2$ ومنه: x = 5 ومنه: x = 5 ومنه:



<u>ط2)</u>



• باستعمال مدور ننقل الطول على مستقيم (d) مزود بمعلم (0;I).

-1 0 1 2 (d)

🖑 ملاحظة مهمة:

- يجب استعمال الطول OI لرسم المثلث القائم على ورقة خارجية، ثم نستعمل المدور لإنشاء \sqrt{x} على المستقيم الحقيقي.
 - توجد طُرق أخرى قُم بالبحث عنها.

تىرى<u>نە:</u> 77 س23.

البرهان بالخلف:

البرهان بالخُلف:

البرهان بالخلف هو نمط من أنماط البرهان، وهو برهنة أساسها إثبات صحة المطلوب، بإبطال نقيضه أو فساد المطلوب بإثبات نقيضه.

مثان: ● إثبات أنّ العدد √2 ليس عددا ناطقاً:

4 الأعداد الأولية:

🛈 کعرہف:

نسمي عددا أولياً هو كل عدد طبيعي يقبل بالضبط قاسمين مختلفين هما 1 والعدد نفسه.

أحثلة:

- اليس عدد أولي $\frac{1}{4}$ يقبل مالا نهاية من القواسم $0 = 0 \times a$ ؛
- اليس عدد أولي $\frac{1}{2}$ ليس عدد أولي $\frac{1}{2}$ ليس عدد $\frac{1}{2}$ ليس عدد $\frac{1}{2}$ ليس عدد أولي أنه المناه المنا
 - أصغر عدد أولي هو العدد 2، وهو العدد الوحيد الذي أولى وزوجى في نفس الوقت.

② الأعداد الأوليث الأصغر من 100:

'37 '31 '29 '23 '19 '17 '13 '11 '7 '5 '3 '2 '79 '73 '71 '67 '61 '59 '53 '47 '43 '41 .97 '89 '83

3 طريفت اختبار أوليت عدد طبيعي:

للتعرف على أولية عدد طبيعي ما نتبع ما يلي:

- نختبر قابلية قسمة هذا العدد على كل من الأعداد الأولية حسب ترتيبها التصاعدي.
- نتوقف عن عملية القسمة عند أوّل باقي معدوم
 أو عندما نُصادف أوّل حاصل قسمة أصغر من المقسوم
 عليه.
 - إذا كان الباقي عند آخر عملية قسمة معدوماً فإنّ العدد ليس أوّلي وإلا فهو أولى.

ولتسهيل العملية، يُمكن استعمال جدول.

مجلة العبقري في الرياضيات (الأعداد والحساب) الملخص ــ . الشعبة: الأولى جذع مشترك علوم وتكنولوجيا .

	3	2	هل يقبل العدد (مثلا 197) القسمة على
		X	الإجابة
		98	حاصل القسمة

أمثلة: ● دراسة أولية العدد 197:

		17	13	11	7	5	3	2	هل يقبل العدد
									197 القسمة على
		₹ <mark>¥</mark>	Х	У	У	У	У	У	الإجابة
Ī	<mark>11<17</mark>	11	19	17	28	39	65	98	حاصل القسمة

أوّل حاصل قسمة 11 أصغر من المقسوم عليه 17، إذن: 197 أوّلي.

● دراسة أولية العدد 259:

7	5	3	2	هل يقبل العدد 259 القسمة على
نعم	У	X	У	الإجابة
37	51	86	129	حاصل القسمة

نلاحظ أنّ: 37 × 7 = 259، إذن: 259 ليس أوّلي.

تاريد: 56 و 57 ص 21.

طربفه خلبل عدد طبيعي إلى جداء عوامل أولبه:

كل عدد طبيعي غير أولى، وأكبر من 1 يقبل تحليلا وحيدا إلى جداء عوامل أولية.

طريقة تحليل عدد طبيهم إلى جداء عوامل أولية:

- نقسم العدد على أصغر عدد أوّلى يكون قاسما له.
 - نقسم حاصل القسمة على أصغر عدد أولى يكون قاسما له.
 - أكرر عمليات القسمة المتتابعة حتى نصل إلى حاصل القسمة مساو لـ 1.
 - جداء هاته القواسم الأولية هو تحليل إلى جداء عو امل أو لبة للعدد.

مئان: ● خليل العدد 120 إلى جداء عوامل أولية:

<u>لدينا:</u> 2 |120

60 2

30 l

15 3

 $|120 = 2^3 \times 3 \times 5|$ اِذَن:

🕏 استعمال التحليل إلى جداء عوامل أوليت:

تهيين القاسم الهشترك الأكبر لهددين طبيهيين وذلك، بحساب جداء العوامل الأولية المشتركة الواردة في تحليل هاذين العددين مأخوذة مرة واحدة وبأصغر $PGCD(a;b) = \cdots \times \dots = :$ اس؛ نجد

تعيين المضاعف المشترك الأصغر لعددين

وذلك، بحساب جداء كل العوامل الأولية الواردة في

تحليل هاذين العددين مأخوذة مرة واحدة وبأكبر أس؛ $.PPCM(a;b) = \cdots \times \ldots = :$ نجد

تعيين الشكل غير قابل للإختزال

وذلك، بتحليل كل من البسط والمقام إلى جداء عوامل أولية ثم اختزال كل العوامل الأولية المشتركة.

تبسيط الجذور

وذلك، بتحليل العدد إلى جداء عوامل أولية، وباستعمال $\sqrt{a^2} = a$ فإنّ $a \ge 0$ الخاصية من أجل

محرفة عدد قواسم عدد طبيهی

وذلك، بتحليل العدد إلى جداء عوامل أولية، ثمّ إضافة 1 إلى الأسس، جداء الأعداد المُحصل عليها هو عدد القو اسم

.b = 2454 و a = 156

PPCM(a;b) و PGCD(a;b) احسب (1

2)أكتب $\frac{a}{h}$ على شكل كسر غير قابل للاختزال.

 \sqrt{a} بسط العدد)

.b = 2454 وَ a = 156

PPCM(a; b)و PGCD(a; b)عساب (1

<u>لدينا:</u> 2 156 2454 1227 3 78 2 409 | 409 39 3 13 | 13

$b = 2 \times 3 \times 409$ وبالتالى: $a = 2^2 \times 3 \times 13$ وبالتالى:

 $PGCD(a;b) = 2 \times 3 = 6$ إذن:

 $PPCM(a; b) = 2^2 \times 3 \times 13 \times 409 = 63804$

ڪائي شکل کسر غير قابل للاختزال: $\frac{a}{h}$ علی شکل کسر

 $\frac{a}{b} = \frac{2^2 \times 3 \times 13}{2 \times 3 \times 409} = \frac{2 \times 13}{409} = \frac{26}{409}$ (01) $\frac{a}{b} = \frac{a \div PGCD(a;b)}{b \div PGCD(a;b)} = \frac{a \div 6}{b \div 6} = \frac{26}{409}$ ر02هـ

 $:\sqrt{a}$ تبسيط الهدد $_{\mathrm{c}}$

 $.\sqrt{a} = \sqrt{2^2 \times 3 \times 13} = 2\sqrt{39}$ لدينا:

حل التبري<u>ن:</u> 29 ص22.

التحقق أن A يقبل 24 قاسما :

(3+1)(2+1)(1+1)=24 : هو A هو إذن عدد قواسم

: مربع تامk مربع تامk تعیین k

 $7 \times 2 \times A = 2 \times 2^3 \times 5^2 \times 7 \times 7 = 2^4 \times 5^2 \times 7^2 = (2^2 \times 5 \times 7)^2$

 $k = 2 \times 7 = 14$: : تعیین m بحیث mA مکعب تام 3

 $m=5\times7^2=245$: $5\times7\times7\times A=(2\times5\times7)^3$

تهارين: 59؛ 65؛ 67؛ 68؛ 72 ص21–22.