Correction de l'épreuve de mathématiques (bac Sciences Techniques)

Session de contrôle 2018

Exercice n°1: (5,5 points)

1.
$$z^2 + (2+i)z + i = 0$$

On a
$$\Delta = (2+i)^2 - 4i = 3$$
 d'où $\delta = \sqrt{3}$

Donc
$$z' = \frac{-2 - i - \sqrt{3}}{2} = -1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i$$
 et $z'' = \frac{-2 - i + \sqrt{3}}{2} = -1 + \frac{\sqrt{3}}{2} - \frac{1}{2}i$

$$S_{\mathbb{C}} = \{z';z''\}$$

2.
$$(E): z^3 + (1+i)z^2 - 2z - i = 0$$

a. On a
$$1^3 + (1+i)1^2 - 2 - i = 0$$
 d'où $z_0 = 1$ est une solution de (E)

b. On a
$$z^3 + (1+i)z^2 - 2z - i = (z-1)(z^2 + az + b) = z^3 + z^2(a-1) + z(b-a) - ib$$

Par identification
$$\begin{cases} a-1=1+i \\ b-a=-2 \\ -b=-i \end{cases} \Leftrightarrow \begin{cases} a=2+i \\ b=i \end{cases}$$

donc
$$z^3 + (1+i)z^2 - 2z - i = (z-1)(z^2 + (2+i)z + +i)$$

$$z^{3} + (1+i)z^{2} - 2z - i = 0 \Leftrightarrow (z-1)(z^{2} + (2+i)z + +i) = 0 \Leftrightarrow \begin{cases} z - 1 = 0 \\ z^{2} + (2+i)z + +i = 0 \end{cases}$$

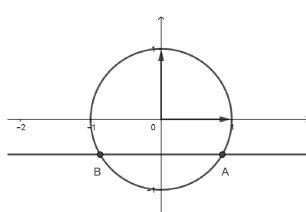
$$\Leftrightarrow z = 1 \text{ ou } z' = -1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i \text{ ou } z' = -1 + \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

a. On a
$$z_A = \frac{\sqrt{3}}{2} - \frac{1}{2}i = \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right) = e^{-i\frac{\pi}{6}}$$

$$z_B = -\frac{\sqrt{3}}{2} - \frac{1}{2}i = \cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right) = e^{-i\frac{5\pi}{6}} = e^{i\frac{7\pi}{6}}$$

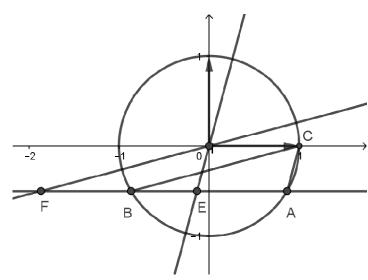
b. On a $|z_A| = |z_B| = 1 \Leftrightarrow OA = OB = 1$ donc A et B appartiennent au cercle de centre O et de rayon 1

On a
$$y_A = y_B = -\frac{1}{2}$$
 et $x_A > 0$
et $x_B < 0$ et A et B
appartiennent au cercle de
centre O et de rayon 1



a. On a $aff(\overrightarrow{CA}) = z_A - z_C = z_A - 1 = z_E = aff(\overrightarrow{OE}) \Leftrightarrow \overrightarrow{CA} = \overrightarrow{OE}$ et puisque O, A et C non alignés donc OEAC est un parallélogramme On a $aff(\overrightarrow{CB}) = z_B - z_C = z_B - 1 = z_F = aff(\overrightarrow{OF}) \Leftrightarrow \overrightarrow{CB} = \overrightarrow{OE}$ et puisque O, B et C non alignés donc OFBC est un parallélogramme

b.



c. On a
$$e^{i\frac{5\pi}{12}} \left(e^{i\frac{7\pi}{12}} + e^{i\frac{-7\pi}{12}} \right) = e^{i\pi} + e^{i\frac{-2\pi}{12}} = -1 + e^{i\frac{-\pi}{6}}$$

et $e^{i\frac{13\pi}{12}} \left(e^{i\frac{\pi}{12}} + e^{i\frac{-\pi}{12}} \right) = e^{i\frac{7\pi}{6}} + e^{i\frac{12\pi}{12}} = e^{i\frac{7\pi}{6}} - 1$

d. On a
$$z' = -1 - \frac{\sqrt{3}}{2} - \frac{1}{2}i = -1 + e^{i\frac{7\pi}{6}} = e^{i\frac{13\pi}{12}} \left(e^{i\frac{\pi}{12}} + e^{i\frac{-\pi}{12}} \right) = 2e^{i\frac{13\pi}{12}} \cos\frac{\pi}{12}$$

$$\left(0 < \frac{\pi}{12} < \frac{\pi}{2} \ donc \cos\frac{\pi}{12} > 0 \right)$$

On a

$$z' = -1 + \frac{\sqrt{3}}{2} - \frac{1}{2}i = -1 + e^{i\frac{-\pi}{6}} = e^{i\frac{5\pi}{12}} \left(e^{i\frac{7\pi}{12}} + e^{i\frac{-7\pi}{12}} \right) = 2e^{i\frac{5\pi}{12}} \cos \frac{7\pi}{12} = -2\cos \frac{7\pi}{12} e^{i\frac{17\pi}{12}}$$
$$\left(\frac{\pi}{2} < \frac{7\pi}{12} < \pi \ donc \cos \frac{\pi}{12} < 0 \right)$$

Exercice n°2: (4,5 points)

1

a. La fonction
$$f: x \mapsto \sqrt{\frac{3}{4}x^2 + 1}$$
 est dérivable sur [0;2]

et pour tout
$$x \in [0;2]$$
, $f'(x) = \frac{\frac{3}{4} \times 2x}{2\sqrt{\frac{3}{4}x^2 + 1}} = \frac{3}{4} \frac{x}{\sqrt{\frac{3}{4}x^2 + 1}}$

- b. Soit $x \in [0;2]$, on a $x^2 \left(\sqrt{\frac{3}{4}}x^2 + 1\right)^2 = x^2 \frac{3}{4}x^2 1 = \frac{1}{4}x^2 1 = \frac{1}{4}(x^2 4) \le 0$ $\operatorname{car}\left(0 \le x \le 2 \ donc \ 0 \le x^2 \le 4\right) \ \operatorname{donc}\ x^2 \le \left(\sqrt{\frac{3}{4}x^2 + 1}\right)^2 \operatorname{d'où}\ x \le \sqrt{\frac{3}{4}x^2 + 1}$ $\operatorname{car}\ x \in [0;2]$
- c. Pour tout $x \in [0;2]$, $0 \le x \le \sqrt{\frac{3}{4}x^2 + 1}$ donc $0 \le \frac{x}{\sqrt{\frac{3}{4}x^2 + 1}} \le 1$ d'où $0 \le \frac{3}{4} \frac{x}{\sqrt{\frac{3}{4}x^2 + 1}} \le \frac{3}{4}$ ainsi $0 \le f'(x) \le \frac{3}{4}$
- d. On a f est dérivable sur [0;2] et pour tout $t \in [0;2]$, $0 \le f'(t) \le \frac{3}{4}$ donc pour $x \in [0;2]$ d'après le théorème des inégalités des accroissements finies on a $0 \le f(2) f(x) \le \frac{3}{4}(2-x)$ donc $0 \le 2 f(x) \le \frac{3}{4}(2-x)$ pour tout $x \in [0;2]$
- 2.
 - a. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $0 < u_n < 2$ Pour n = 0, on a $u_0 = 1$ donc $0 < u_0 < 2$ vérifiée Soit $n \in \mathbb{N}$, on suppose que $0 < u_n < 2$ et montrons que $0 < u_{n+1} < 2$ On a $0 < u_n < 2$ et puisque f est croissante donc $f(0) < f(u_n) < f(2)$ d'où $0 < 1 < u_{n+1} < 2$ donc $0 < u_{n+1} < 2$ conclusion : pour tout $n \in \mathbb{N}$, $0 < u_n < 2$
 - b. On a pour tout $x \in [0;2]$, $0 \le 2 f(x) \le \frac{3}{4}(2 x)$ et puisque $u_n \in [0;2]$ pour tout $n \in \mathbb{N}$ donc $0 \le 2 f(u_n) \le \frac{3}{4}(2 u_n)$ d'où $0 \le 2 u_{n+1} \le \frac{3}{4}(2 u_n)$ pour tout $n \in \mathbb{N}$
 - c. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $0 \le 2 u_n \le \left(\frac{3}{4}\right)^n$

Pour
$$n = 0$$
 , on a $2 - u_0 = 2 - 1 = 1 = \left(\frac{3}{4}\right)^0$, vérifiée

Soit
$$n \in \mathbb{N}$$
, on suppose que $0 \le 2 - u_n \le \left(\frac{3}{4}\right)^n$

Montrons que
$$0 \le 2 - u_{n+1} \le \left(\frac{3}{4}\right)^{n+1}$$

On a
$$0 \le 2 - u_n \le \left(\frac{3}{4}\right)^n \text{ donc } 0 \le \left(2 - u_n\right) \times \frac{3}{4} \le \left(\frac{3}{4}\right)^{n+1}$$

et puisque
$$0 \le 2 - u_{n+1} \le \frac{3}{4} (2 - u_n)$$
 donc $0 \le 2 - u_{n+1} \le \left(\frac{3}{4}\right)^{n+1}$

Conclusion: pour tout
$$n \in \mathbb{N}$$
, $0 \le 2 - u_n \le \left(\frac{3}{4}\right)^n$

d. On a
$$\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = 0$$
 car $-1 < \frac{3}{4} < 1$ et puisque $0 \le 2 - u_n \le \left(\frac{3}{4}\right)^n$ donc $\lim_{n \to +\infty} \left(2 - u_n\right) = 0$ ainsi $\lim_{n \to +\infty} u_n = 2$

3. Pour tout
$$n \in \mathbb{N}$$
 on a $0 \le 2 - u_n \le \left(\frac{3}{4}\right)^n$ donc $-2 \le -u_n \le \left(\frac{3}{4}\right)^n - 2$ ainsi $2 - \left(\frac{3}{4}\right)^n \le u_n \le 2$ par suite $\sum_{k=0}^{n-1} 2 - \sum_{k=0}^{n-1} \left(\frac{3}{4}\right)^k \le \sum_{k=0}^{n-1} u_k \le \sum_{k=0}^{n-1} 2$

donc
$$2n - \left(\frac{3}{4}\right)^0 \left(\frac{1 - \left(\frac{3}{4}\right)^n}{1 - \frac{3}{4}}\right) \le S_n \le 2n \text{ d'où } 2n - 4\left(1 - \left(\frac{3}{4}\right)^n\right) \le S_n \le 2n \text{ et par}$$

suite
$$2 - \frac{4}{n} \left(1 - \left(\frac{3}{4} \right)^n \right) \le \frac{S_n}{n} \le 2$$
 et puisque $\lim_{n \to +\infty} \left(2 - \frac{4}{n} \left(1 - \left(\frac{3}{4} \right)^n \right) \right) = 2$ donc $\lim_{n \to +\infty} \frac{S_n}{n} = 2$

Exercice n°3: (4 points)

$$0,5$$

$$0,02$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0,03$$

$$0$$

a. On a
$$p(D \cap O) = p(O)p(D/O) = 0.5 \times 0.02 = 0.01$$

b. On a
$$p(D \cap \overline{O}) = p(\overline{O})p(D/\overline{O}) = 0.5 \times 0.2 = 0.1$$

c. On a
$$p(\overline{D}) = 1 - p(D) = 1 - (p(D \cap O) + p(D \cap \overline{O})) = 1 - (0.01 + 0.1) = 0.89$$

2. E: « Les quatre bougies soient non défectueuses »

$$p(E) = \left(p\left(\overline{D}\right)\right)^4 = 0.89^4$$

3. X: suit une loi exponentielle de paramètre λ

a. La durée de vie moyenne d'une bougies est 40000 donc $\frac{1}{\lambda}$ = 40000 d'où

$$\lambda = \frac{1}{40000} = 2,5.10^{-5}$$

b. On a
$$p(20000 \le X \le 40000) = e^{-\lambda \times 20000} - e^{-\lambda 40000} = e^{-0.5} - e^{-1}$$

c. On a

$$p((X \ge 45000) / (X \ge 40000)) = \frac{p((X \ge 45000) \cap (X \ge 40000))}{p(X \ge 40000)} = \frac{p(X \ge 45000)}{p(X \ge 40000)}$$
$$= \frac{e^{-\lambda \times 45000}}{e^{-\lambda 40000}} = e^{-\lambda \times 5000} = e^{-0.125} = 0,88$$

Exercice n°4: (6 points)

1.

a. On a
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (1 - xe^{1-x}) = +\infty$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(\frac{1 - xe^{1-x}}{x} \right) = \lim_{x \to -\infty} \left(\frac{1}{x} - e^{1-x} \right) = -\infty$$

Donc la courbe (ζ) admet une branche parabolique de direction (O,\vec{j}) au voisinage de $-\infty$

b. On a
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (1 - xe^{1-x}) = \lim_{x \to +\infty} \left(1 - \frac{x}{e^x} \times e\right) = \lim_{x \to +\infty} \left(1 - \frac{e}{\frac{e^x}{x}}\right) = 1$$
 donc la

droite Δ : y = 1 est une asymptote à la courbe (ζ) au voisinage de $+\infty$

2.

a.
$$f$$
 est dérivable sur \mathbb{R} et $f'(x) = -e^{1-x} - x(-e^{1-x}) = (x-1)e^{1-x}$

b.
$$f'(x) = 0 \Leftrightarrow (x-1)e^{1-x} = 0 \Leftrightarrow x = 1 \text{ d'où}$$

	Х	-8		1		+∞
_	f'(x)		-	0	+	
	f(x)	+∞ _		^ 0 ~		1

a. On a
$$f(x)-1=-xe^{1-x}=0 \Leftrightarrow x=0$$

Х	-∞ 0 +∞
f(x)-1	+ 0 –
Position relatif de (ζ)	(ζ) au dessus de Δ de Δ $(\zeta) \cap \Delta = \{(0;1)\}$
et Δ	(5) 14-{(0,1)}

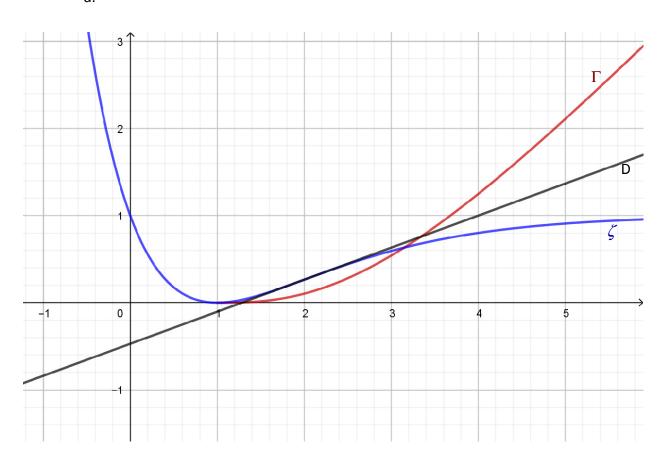
- b. Soit T la tangente à (ζ) en $I(2;1-2e^{-1})$ donc T:y=f'(2)(x-2)+f(2) et puisque $f'(2)=\frac{1}{e}$ et $f(2)=1-\frac{2}{e}$ d'où $T:y=\frac{1}{e}(x-2)+1-\frac{2}{e}=\frac{1}{e}x+1-\frac{4}{e}$ donc T=D
- c. On a f est dérivable sur \mathbb{R} et $f'(x) = (x-1)e^{1-x}$ donc f' est dérivable sur \mathbb{R} et $f'(x) = e^{1-x} + (x-1)(-e^{1-x}) = e^{1-x}(2-x)$

D'où

Х	-8		2		+∞
f''(x)		+	0	_	

et puisque f" s'annule en changeant de signe donc I(2;f(2)) est un point d'inflexion pour la courbe (ζ)

d.



a. Pour tout
$$x \in \mathbb{R}$$
 , on a $1 - e^{1-x} - f'(x) = 1 - e^{1-x} - (x-1)e^{1-x} = 1 - xe^{1-x} = f(x)$

b. On a
$$A_{\alpha} = \int_{1}^{\alpha} |f(t)| dt = \int_{1}^{\alpha} f(t) dt = \int_{1}^{\alpha} (1 - e^{1 - t} - f'(t)) dt = \left[t + e^{1 - t} - f(t)\right]_{1}^{\alpha}$$

= $\left(\alpha + e^{1 - \alpha} - f(\alpha)\right) - \left(1 + e^{0} - f(1)\right) = \alpha - 3 + \left(1 + \alpha\right)e^{1 - \alpha} = h(\alpha)$

c.

